Unsigned 64-bit integer operations

Module std::math::u64 contains a set of procedures which can be used to perform unsigned 64-bit integer operations. These operations fall into the following categories:

  • Arithmetic operations - addition, multiplication, division etc.
  • Comparison operations - equality, less than, greater than etc.
  • Bitwise operations - binary AND, OR, XOR, bit shifts etc.

All procedures assume that an unsigned 64-bit integer (u64) is encoded using two elements, each containing an unsigned 32-bit integer (u32). When placed on the stack, the least-significant limb is assumed to be deeper in the stack. For example, a u64 value a consisting of limbs a_hi and a_lo would be position on the stack like so:

[a_hi, a_lo, ... ]

Procedures which check whether the input values are encoded correctly are designated with checked prefix. For example, checked_add would fail if any of the top 4 elements on the stack contains a value greater than . In contrast, wrapping_add and overflowing_add would not perform these checks, and therefore, if any of the top 4 stack elements is greater than , the operation will not fail but rather will produce an undefined result. Thus, when using versions of procedures which are not checked, it is important to be certain that input values are 32-bit limbs encoding valid u64 values.

Arithmetic operations

ProcedureDescription
checked_addPerforms addition of two unsigned 64-bit integers and fails if the result would overflow.
The input values are expected to be represented using 32-bit limbs, and the procedure will fail if they are not.
The stack transition looks as follows:
[b_hi, b_lo, a_hi, a_lo, ...] -> [c_hi, c_lo, ...], where c = (a + b) % 2^64
overflowing_addPerforms addition of two unsigned 64-bit integers preserving the overflow.
The input values are assumed to be represented using 32-bit limbs, but this is not checked.
The stack transition looks as follows:
[b_hi, b_lo, a_hi, a_lo, ...] -> [overflow_flag, c_hi, c_lo, ...], where c = (a + b) % 2^64
wrapping_addPerforms addition of two unsigned 64-bit integers discarding the overflow.
The input values are assumed to be represented using 32-bit limbs, but this is not checked.
The stack transition looks as follows:
[b_hi, b_lo, a_hi, a_lo, ...] -> [c_hi, c_lo, ...], where c = (a + b) % 2^64
checked_subPerforms subtraction of two unsigned 64-bit integers and fails if the result would underflow.
The input values are expected to be represented using 32-bit limbs, and the procedure will fail if they are not.
The stack transition looks as follows:
[b_hi, b_lo, a_hi, a_lo, ...] -> [c_hi, c_lo, ...], where c = (a - b) % 2^64
overflowing_subPerforms subtraction of two unsigned 64-bit integers preserving the overflow.
The input values are assumed to be represented using 32-bit limbs, but this is not checked.
The stack transition looks as follows:
[b_hi, b_lo, a_hi, a_lo, ...] -> [underflow_flag, c_hi, c_lo, ...], where c = (a - b) % 2^64
wrapping_subPerforms subtraction of two unsigned 64-bit integers discarding the overflow.
The input values are assumed to be represented using 32-bit limbs, but this is not checked.
The stack transition looks as follows:
[b_hi, b_lo, a_hi, a_lo, ...] -> [c_hi, c_lo, ...], where c = (a - b) % 2^64
checked_mulPerforms multiplication of two unsigned 64-bit integers and fails if the result would overflow.
The input values are expected to be represented using 32-bit limbs, and the procedure will fail if they are not.
The stack transition looks as follows:
[b_hi, b_lo, a_hi, a_lo, ...] -> [c_hi, c_lo, ...], where c = (a * b) % 2^64
overflowing_mulPerforms multiplication of two unsigned 64-bit integers preserving the overflow.
The input values are assumed to be represented using 32-bit limbs, but this is not checked.
The stack transition looks as follows:
[b_hi, b_lo, a_hi, a_lo, ...] -> [c_hi_hi, c_hi_lo, c_lo_hi, c_lo_lo, ...], where c = (a * b) % 2^64
wrapping_mulPerforms multiplication of two unsigned 64-bit integers discarding the overflow.
The input values are assumed to be represented using 32-bit limbs, but this is not checked.
The stack transition looks as follows:
[b_hi, b_lo, a_hi, a_lo, ...] -> [c_hi, c_lo, ...], where c = (a * b) % 2^64
checked_divPerforms division of two unsigned 64-bit integers discarding the remainder.
The input values are expected to be represented using 32-bit limbs, and the procedure will fail if they are not.
The stack transition looks as follows:
[b_hi, b_lo, a_hi, a_lo, ...] -> [c_hi, c_lo, ...], where c = a // b
unchecked_divPerforms division of two unsigned 64-bit integers discarding the remainder.
The input values are assumed to be represented using 32-bit limbs, but this is not checked.
The stack transition looks as follows:
[b_hi, b_lo, a_hi, a_lo, ...] -> [c_hi, c_lo, ...], where c = a // b
checked_modPerforms modulo operation of two unsigned 64-bit integers.
The input values are expected to be represented using 32-bit limbs, and the procedure will fail if they are not.
The stack transition looks as follows:
[b_hi, b_lo, a_hi, a_lo, ...] -> [c_hi, c_lo, ...], where c = a % b
unchecked_modPerforms modulo operation of two unsigned 64-bit integers.
The input values are assumed to be represented using 32-bit limbs, but this is not checked.
The stack transition looks as follows:
[b_hi, b_lo, a_hi, a_lo, ...] -> [c_hi, c_lo, ...], where c = a % b
checked_divmodPerforms divmod operation of two unsigned 64-bit integers.
The input values are expected to be represented using 32-bit limbs, and the procedure will fail if they are not.
The stack transition looks as follows:
[b_hi, b_lo, a_hi, a_lo, ...] -> [r_hi, r_lo, q_hi, q_lo ...], where r = a % b, q = a // b
unchecked_divmodPerforms divmod operation of two unsigned 64-bit integers.
The input values are assumed to be represented using 32-bit limbs, but this is not checked.
The stack transition looks as follows:
[b_hi, b_lo, a_hi, a_lo, ...] -> [r_hi, r_lo, q_hi, q_lo ...], where r = a % b, q = a // b

Comparison operations

ProcedureDescription
checked_ltPerforms less-than comparison of two unsigned 64-bit integers.
The input values are expected to be represented using 32-bit limbs, and the procedure will fail if they are not.
The stack transition looks as follows:
[b_hi, b_lo, a_hi, a_lo, ...] -> [c, ...], where c = 1 when a < b, and 0 otherwise.
unchecked_ltPerforms less-than comparison of two unsigned 64-bit integers.
The input values are assumed to be represented using 32-bit limbs, but this is not checked.
The stack transition looks as follows:
[b_hi, b_lo, a_hi, a_lo, ...] -> [c, ...], where c = 1 when a < b, and 0 otherwise.
checked_gtPerforms greater-than comparison of two unsigned 64-bit integers.
The input values are expected to be represented using 32-bit limbs, and the procedure will fail if they are not.
The stack transition looks as follows:
[b_hi, b_lo, a_hi, a_lo, ...] -> [c, ...], where c = 1 when a > b, and 0 otherwise.
unchecked_gtPerforms greater-than comparison of two unsigned 64-bit integers.
The input values are assumed to be represented using 32-bit limbs, but this is not checked.
The stack transition looks as follows:
[b_hi, b_lo, a_hi, a_lo, ...] -> [c, ...], where c = 1 when a > b, and 0 otherwise.
This takes 11 cycles.
checked_ltePerforms less-than-or-equal comparison of two unsigned 64-bit integers.
The input values are expected to be represented using 32-bit limbs, and the procedure will fail if they are not.
The stack transition looks as follows:
[b_hi, b_lo, a_hi, a_lo, ...] -> [c, ...], where c = 1 when a <= b, and 0 otherwise.
unchecked_ltePerforms less-than-or-equal comparison of two unsigned 64-bit integers.
The input values are assumed to be represented using 32-bit limbs, but this is not checked.
The stack transition looks as follows:
[b_hi, b_lo, a_hi, a_lo, ...] -> [c, ...], where c = 1 when a <= b, and 0 otherwise.
checked_gtePerforms greater-than-or-equal comparison of two unsigned 64-bit integers.
The input values are expected to be represented using 32-bit limbs, and the procedure will fail if they are not.
The stack transition looks as follows:
[b_hi, b_lo, a_hi, a_lo, ...] -> [c, ...], where c = 1 when a >= b, and 0 otherwise.
unchecked_gtePerforms greater-than-or-equal comparison of two unsigned 64-bit integers.
The input values are assumed to be represented using 32-bit limbs, but this is not checked.
The stack transition looks as follows:
[b_hi, b_lo, a_hi, a_lo, ...] -> [c, ...], where c = 1 when a >= b, and 0 otherwise.
checked_eqPerforms equality comparison of two unsigned 64-bit integers.
The input values are expected to be represented using 32-bit limbs, and the procedure will fail if they are not.
The stack transition looks as follows:
[b_hi, b_lo, a_hi, a_lo, ...] -> [c, ...], where c = 1 when a == b, and 0 otherwise.
unchecked_eqPerforms equality comparison of two unsigned 64-bit integers.
The input values are assumed to be represented using 32-bit limbs, but this is not checked.
The stack transition looks as follows:
[b_hi, b_lo, a_hi, a_lo, ...] -> [c, ...], where c = 1 when a == b, and 0 otherwise.
checked_neqPerforms inequality comparison of two unsigned 64-bit integers.
The input values are expected to be represented using 32-bit limbs, and the procedure will fail if they are not.
The stack transition looks as follows:
[b_hi, b_lo, a_hi, a_lo, ...] -> [c, ...], where c = 1 when a != b, and 0 otherwise.
unchecked_neqPerforms inequality comparison of two unsigned 64-bit integers.
The input values are assumed to be represented using 32-bit limbs, but this is not checked.
The stack transition looks as follows:
[b_hi, b_lo, a_hi, a_lo, ...] -> [c, ...], where c = 1 when a != b, and 0 otherwise.
checked_eqzPerforms comparison to zero of an unsigned 64-bit integer.
The input value is assumed to be represented using 32-bit limbs, fails if it is not.
The stack transition looks as follows:
[a_hi, a_lo, ...] -> [c, ...], where c = 1 when a == 0, and 0 otherwise.
unchecked_eqzPerforms comparison to zero of an unsigned 64-bit integer.
The input value is assumed to be represented using 32-bit limbs, but this is not checked.
The stack transition looks as follows:
[a_hi, a_lo, ...] -> [c, ...], where c = 1 when a == 0, and 0 otherwise.
checked_minCompares two unsigned 64-bit integers and drop the larger one from the stack.
The input values are expected to be represented using 32-bit limbs, and the procedure will fail if they are not.
The stack transition looks as follows:
[b_hi, b_lo, a_hi, a_lo, ...] -> [c_hi, c_lo, ...], where c = a when a < b, and b otherwise.
unchecked_minCompares two unsigned 64-bit integers and drop the larger one from the stack.
The input values are assumed to be represented using 32-bit limbs, but this is not checked.
The stack transition looks as follows:
[b_hi, b_lo, a_hi, a_lo, ...] -> [c_hi, c_lo, ...], where c = a when a < b, and b otherwise.
checked_maxCompares two unsigned 64-bit integers and drop the smaller one from the stack.
The input values are expected to be represented using 32-bit limbs, and the procedure will fail if they are not.
The stack transition looks as follows:
[b_hi, b_lo, a_hi, a_lo, ...] -> [c_hi, c_lo, ...], where c = a when a > b, and b otherwise.
unchecked_maxCompares two unsigned 64-bit integers and drop the smaller one from the stack.
The input values are assumed to be represented using 32-bit limbs, but this is not checked.
The stack transition looks as follows:
[b_hi, b_lo, a_hi, a_lo, ...] -> [c_hi, c_lo, ...], where c = a when a > b, and b otherwise.

Bitwise operations

ProcedureDescription
checked_andPerforms bitwise AND of two unsigned 64-bit integers.
The input values are assumed to be represented using 32-bit limbs, but this is not checked.
The stack transition looks as follows:
[[b_hi, b_lo, a_hi, a_lo, ...] -> [c_hi, c_lo, ...], where c = a AND b.
checked_orPerforms bitwise OR of two unsigned 64-bit integers.
The input values are expected to be represented using 32-bit limbs, and the procedure will fail if they are not.
The stack transition looks as follows:
[b_hi, b_lo, a_hi, a_lo, ...] -> [c_hi, c_lo, ...], where c = a OR b.
checked_xorPerforms bitwise XOR of two unsigned 64-bit integers.
The input values are expected to be represented using 32-bit limbs, and the procedure will fail if they are not.
The stack transition looks as follows:
[b_hi, b_lo, a_hi, a_lo, ...] -> [c_hi, c_lo, ...], where c = a XOR b.
overflowing_shlPerforms left shift of one unsigned 64-bit integer preserving the overflow and
using the pow2 operation.
The input value to be shifted is assumed to be represented using 32-bit limbs.
The shift value should be in the range [0, 64), otherwise it will result in an error.
The stack transition looks as follows:
[b, a_hi, a_lo, ...] -> [d_hi, d_lo, c_hi, c_lo, ...], where (d,c) = a << b,
which d contains the bits shifted out.
This takes 35 cycles.
unchecked_shlPerforms left shift of one unsigned 64-bit integer using the pow2 operation.
The input value to be shifted is assumed to be represented using 32-bit limbs.
The shift value should be in the range [0, 64), otherwise it will result in an error.
The stack transition looks as follows:
[b, a_hi, a_lo, ...] -> [c_hi, c_lo, ...], where c = a << b mod 2^64.
This takes 28 cycles.
overflowing_shrPerforms right shift of one unsigned 64-bit integer preserving the overflow and
using the pow2 operation.
The input value to be shifted is assumed to be represented using 32-bit limbs.
The shift value should be in the range [0, 64), otherwise it will result in an error.
The stack transition looks as follows:
[b, a_hi, a_lo, ...] -> [d_hi, d_lo, c_hi, c_lo, ...], where c = a >> b, d = a << (64 - b).
This takes 94 cycles.
unchecked_shrPerforms right shift of one unsigned 64-bit integer using the pow2 operation.
The input value to be shifted is assumed to be represented using 32-bit limbs.
The shift value should be in the range [0, 64), otherwise it will result in an error.
The stack transition looks as follows:
[b, a_hi, a_lo, ...] -> [c_hi, c_lo, ...], where c = a >> b.
This takes 44 cycles.
unchecked_rotlPerforms left rotation of one unsigned 64-bit integer using the pow2 operation.
The input value to be shifted is assumed to be represented using 32-bit limbs.
The shift value should be in the range [0, 64), otherwise it will result in an error.
The stack transition looks as follows:
[b, a_hi, a_lo, ...] -> [c_hi, c_lo, ...], where c = a << b mod 2^64.
This takes 35 cycles.
unchecked_rotrPerforms right rotation of one unsigned 64-bit integer using the pow2 operation.
The input value to be shifted is assumed to be represented using 32-bit limbs.
The shift value should be in the range [0, 64), otherwise it will result in an error.
The stack transition looks as follows:
[b, a_hi, a_lo, ...] -> [c_hi, c_lo, ...], where c = a << b mod 2^64.
This takes 40 cycles.