Deploying a Counter Contract
Using the Miden client in Rust to deploy and interact with a custom smart contract on Miden
Overview
In this tutorial, we will build a simple counter smart contract that maintains a count, deploy it to the Miden testnet, and interact with it by incrementing the count. You can also deploy the counter contract on a locally running Miden node, similar to previous tutorials.
Using a script, we will invoke the increment function within the counter contract to update the count. This tutorial provides a foundational understanding of developing and deploying custom smart contracts on Miden.
What we'll cover
- Deploying a custom smart contract on Miden
- Getting up to speed with the basics of Miden assembly
- Calling procedures in an account
- Pure vs state changing procedures
Prerequisites
This tutorial assumes you have a basic understanding of Miden assembly. To quickly get up to speed with Miden assembly (MASM), please play around with running Miden programs in the Miden playground.
Step 1: Initialize your repository
Create a new Rust repository for your Miden project and navigate to it with the following command:
cargo new miden-counter-contract
cd miden-counter-contract
Add the following dependencies to your Cargo.toml
file:
[dependencies]
miden-client = { version = "0.7", features = ["testing", "concurrent", "tonic", "sqlite"] }
miden-lib = { version = "0.7", default-features = false }
miden-objects = { version = "0.7.2", default-features = false }
miden-crypto = { version = "0.13.2", features = ["executable"] }
rand = { version = "0.8" }
serde = { version = "1", features = ["derive"] }
serde_json = { version = "1.0", features = ["raw_value"] }
tokio = { version = "1.40", features = ["rt-multi-thread", "net", "macros"] }
rand_chacha = "0.3.1"
Set up your src/main.rs
file
In the previous section, we explained how to instantiate the Miden client. We can reuse the same initialize_client
function for our counter contract.
Copy and paste the following code into your src/main.rs
file:
use std::{fs, path::Path, sync::Arc}; use rand::Rng; use rand_chacha::rand_core::SeedableRng; use rand_chacha::ChaCha20Rng; use tokio::time::Duration; use miden_client::{ account::{AccountStorageMode, AccountType}, crypto::RpoRandomCoin, rpc::{Endpoint, TonicRpcClient}, store::{sqlite_store::SqliteStore, StoreAuthenticator}, transaction::{TransactionKernel, TransactionRequestBuilder}, Client, ClientError, Felt, }; use miden_objects::{ account::{AccountBuilder, AccountComponent, AuthSecretKey, StorageSlot}, assembly::Assembler, crypto::{dsa::rpo_falcon512::SecretKey, hash::rpo::RpoDigest}, Word, }; pub async fn initialize_client() -> Result<Client<RpoRandomCoin>, ClientError> { // RPC endpoint and timeout let endpoint = Endpoint::new( "https".to_string(), "rpc.devnet.miden.io".to_string(), Some(443), ); let timeout_ms = 10_000; // Build RPC client let rpc_api = Box::new(TonicRpcClient::new(endpoint, timeout_ms)); // Seed RNG let mut seed_rng = rand::thread_rng(); let coin_seed: [u64; 4] = seed_rng.gen(); // Create random coin instance let rng = RpoRandomCoin::new(coin_seed.map(Felt::new)); // SQLite path let store_path = "store.sqlite3"; // Initialize SQLite store let store = SqliteStore::new(store_path.into()) .await .map_err(ClientError::StoreError)?; let arc_store = Arc::new(store); // Create authenticator referencing the store and RNG let authenticator = StoreAuthenticator::new_with_rng(arc_store.clone(), rng.clone()); // Instantiate client (toggle debug mode as needed) let client = Client::new(rpc_api, rng, arc_store, Arc::new(authenticator), true); Ok(client) } pub fn get_new_pk_and_authenticator() -> (Word, AuthSecretKey) { // Create a deterministic RNG with zeroed seed let seed = [0_u8; 32]; let mut rng = ChaCha20Rng::from_seed(seed); // Generate Falcon-512 secret key let sec_key = SecretKey::with_rng(&mut rng); // Convert public key to `Word` (4xFelt) let pub_key: Word = sec_key.public_key().into(); // Wrap secret key in `AuthSecretKey` let auth_secret_key = AuthSecretKey::RpoFalcon512(sec_key); (pub_key, auth_secret_key) } #[tokio::main] async fn main() -> Result<(), ClientError> { let mut client = initialize_client().await?; println!("Client initialized successfully."); let sync_summary = client.sync_state().await.unwrap(); println!("Latest block: {}", sync_summary.block_num); Ok(()) }
When running the code above, there will be some unused imports, however, we will use these imports later on in the tutorial.
Step 2: Build the counter contract
For better code organization, we will separate the Miden assembly code from our Rust code.
Create a directory named masm
at the root of your miden-counter-contract
directory. This will contain our contract and script masm code.
Initialize the masm
directory:
mkdir -p masm/accounts masm/scripts
This will create:
masm/
├── accounts/
└── scripts/
Custom Miden smart contract
Below is our counter contract. It has a single exported procedure increment_count
.
At the beginning of the MASM file, we define our imports. In this case, we import miden::account
and std::sys
.
The import miden::account
contains useful procedures for interacting with a smart contract's state.
The import std::sys
contains a useful procedure for truncating the operand stack at the end of a procedure.
Here's a breakdown of what the increment_count
procedure does:
- Pushes
0
onto the stack, representing the index of the storage slot to read. - Calls
account::get_item
with the index of0
. - Pushes
1
onto the stack. - Adds
1
to the count value returned fromaccount::get_item
. - For demonstration purposes, calls
debug.stack
to see the state of the stack - Pushes
0
onto the stack, which is the index of the storage slot we want to write to. - Calls
account::set_item
which saves the incremented count to storage at index0
- Calls
sys::truncate_stack
to truncate the stack to size 16.
Inside of the masm/accounts/
directory, create the counter.masm
file:
use.miden::account
use.std::sys
export.increment_count
# => []
push.0
# => [index]
exec.account::get_item
# => [count]
push.1 add
# debug statement with client
debug.stack
# => [count+1]
push.0
# [index, count+1]
exec.account::set_item
# => []
push.1 exec.account::incr_nonce
# => []
exec.sys::truncate_stack
end
Note: It's a good habit to add comments above each line of MASM code with the expected stack state. This improves readability and helps with debugging.
Concept of function visibility and modifiers in Miden smart contracts
The increment_count
function in our Miden smart contract behaves like an "external" Solidity function without a modifier, meaning any user can call it to increment the contract's count. This is because it calls account::incr_nonce
during execution.
If the increment_count
procedure did not call the account::incr_nonce
procedure during its execution, only the deployer of the counter contract would be able to increment the count of the smart contract (if the RpoFalcon512 component was added to the account, in this case we didn't add it).
In essence, if a procedure performs a state change in the Miden smart contract, and does not call account::incr_nonce
at some point during its execution, this function can be equated to having an onlyOwner
Solidity modifer, meaning only the user with knowledge of the private key of the account can execute transactions that result in a state change.
Note: Adding the account::incr_nonce
to a state changing procedure allows any user to call the procedure.
Custom script
This is a Miden assembly script that will call the increment_count
procedure during the transaction.
The string {increment_count}
will be replaced with the hash of the increment_count
procedure in our rust program.
Inside of the masm/scripts/
directory, create the counter_script.masm
file:
begin
# => []
call.{increment_count}
end
Step 3: Build the counter smart contract in Rust
To build the counter contract copy and paste the following code at the end of your src/main.rs
file:
#![allow(unused)] fn main() { // ------------------------------------------------------------------------- // STEP 1: Create a basic counter contract // ------------------------------------------------------------------------- println!("\n[STEP 1] Creating counter contract."); // Load the MASM file for the counter contract let file_path = Path::new("./masm/accounts/counter.masm"); let account_code = fs::read_to_string(file_path).unwrap(); // Prepare assembler (debug mode = true) let assembler: Assembler = TransactionKernel::assembler().with_debug_mode(true); // Compile the account code into `AccountComponent` with one storage slot let account_component = AccountComponent::compile( account_code, assembler, vec![StorageSlot::Value(Word::default())], ) .unwrap() .with_supports_all_types(); // Init seed for the counter contract let init_seed = ChaCha20Rng::from_entropy().gen(); // Anchor block of the account let anchor_block = client.get_latest_epoch_block().await.unwrap(); // Build the new `Account` with the component let (counter_contract, counter_seed) = AccountBuilder::new(init_seed) .anchor((&anchor_block).try_into().unwrap()) .account_type(AccountType::RegularAccountImmutableCode) .storage_mode(AccountStorageMode::Public) .with_component(account_component) .build() .unwrap(); println!( "counter_contract hash: {:?}", counter_contract.hash().to_hex() ); println!("contract id: {:?}", counter_contract.id().to_hex()); // Since the counter contract is public and does sign any transactions, auth_secrete_key is not required. // However, to import to the client, we must generate a random value. let (_counter_pub_key, auth_secret_key) = get_new_pk_and_authenticator(); client .add_account( &counter_contract.clone(), Some(counter_seed), &auth_secret_key, false, ) .await .unwrap(); }
Run the following command to execute src/main.rs:
cargo run --release
After the program executes, you should see the counter contract hash and contract id printed to the terminal, for example:
counter_contract hash: "0xd693494753f51cb73a436916077c7b71c680a6dddc64dc364c1fe68f16f0c087"
contract id: "0x082ed14c8ad9a866"
Step 4: Computing the prodedure roots
Each Miden assembly procedure has an associated hash. When calling a procedure in a smart contract, we need to know the hash of the procedure. The hashes of the procedures form a Merkelized Abstract Syntax Tree (MAST).
To get the procedures of the counter contract, add this code snippet to the end of your main()
function:
#![allow(unused)] fn main() { // Print procedure root hashes let procedures = counter_contract.code().procedure_roots(); let procedures_vec: Vec<RpoDigest> = procedures.collect(); for (index, procedure) in procedures_vec.iter().enumerate() { println!("Procedure {}: {:?}", index + 1, procedure.to_hex()); } println!("number of procedures: {}", procedures_vec.len()); }
Run the following command to execute src/main.rs:
cargo run --release
After the program executes, you should see the procedure hashes printed to the terminal, for example:
Procedure 1: "0x2259e69ba0e49a85f80d5ffc348e25a0386a0bbe7dbb58bc45b3f1493a03c725"
This is the hash of the increment_count
procedure.
Step 4: Incrementing the count
Now that we know the hash of the increment_count
procedure, we can call the procedure in the counter contract. In the Rust code below, we replace the {increment_count}
string with the hash of the increment_count
procedure.
Then we create a new transaction request with our custom script, and then pass the transaction request to the client.
Paste the following code at the end of your src/main.rs
file:
#![allow(unused)] fn main() { // ------------------------------------------------------------------------- // STEP 2: Call the Counter Contract with a script // ------------------------------------------------------------------------- println!("\n[STEP 2] Call Counter Contract With Script"); // Grab the first procedure hash let procedure_2_hash = procedures_vec[0].to_hex(); let procedure_call = format!("{}", procedure_2_hash); // Load the MASM script referencing the increment procedure let file_path = Path::new("./masm/scripts/counter_script.masm"); let original_code = fs::read_to_string(file_path).unwrap(); // Replace the placeholder with the actual procedure call let replaced_code = original_code.replace("{increment_count}", &procedure_call); println!("Final script:\n{}", replaced_code); // Compile the script referencing our procedure let tx_script = client.compile_tx_script(vec![], &replaced_code).unwrap(); // Build a transaction request with the custom script let tx_increment_request = TransactionRequestBuilder::new() .with_custom_script(tx_script) .unwrap() .build(); // Execute the transaction locally let tx_result = client .new_transaction(counter_contract.id(), tx_increment_request) .await .unwrap(); let tx_id = tx_result.executed_transaction().id(); println!( "View transaction on MidenScan: https://testnet.midenscan.com/tx/{:?}", tx_id ); // Submit transaction to the network let _ = client.submit_transaction(tx_result).await; // Wait, then re-sync tokio::time::sleep(Duration::from_secs(3)).await; client.sync_state().await.unwrap(); // Retrieve updated contract data to see the incremented counter let account = client.get_account(counter_contract.id()).await.unwrap(); println!( "storage item 0: {:?}", account.unwrap().account().storage().get_item(0) ); }
Note: Once our counter contract is deployed, other users can increment the count of the smart contract simply by knowing the account id of the contract and the procedure hash of the increment_count
procedure.
Summary
The final src/main.rs
file should look like this:
use std::{fs, path::Path, sync::Arc}; use rand::Rng; use rand_chacha::rand_core::SeedableRng; use rand_chacha::ChaCha20Rng; use tokio::time::Duration; use miden_client::{ account::{AccountStorageMode, AccountType}, crypto::RpoRandomCoin, rpc::{Endpoint, TonicRpcClient}, store::{sqlite_store::SqliteStore, StoreAuthenticator}, transaction::{TransactionKernel, TransactionRequestBuilder}, Client, ClientError, Felt, }; use miden_objects::{ account::{AccountBuilder, AccountComponent, AuthSecretKey, StorageSlot}, assembly::Assembler, crypto::{dsa::rpo_falcon512::SecretKey, hash::rpo::RpoDigest}, Word, }; pub async fn initialize_client() -> Result<Client<RpoRandomCoin>, ClientError> { // RPC endpoint and timeout let endpoint = Endpoint::new( "https".to_string(), "rpc.devnet.miden.io".to_string(), Some(443), ); let timeout_ms = 10_000; // Build RPC client let rpc_api = Box::new(TonicRpcClient::new(endpoint, timeout_ms)); // Seed RNG let mut seed_rng = rand::thread_rng(); let coin_seed: [u64; 4] = seed_rng.gen(); // Create random coin instance let rng = RpoRandomCoin::new(coin_seed.map(Felt::new)); // SQLite path let store_path = "store.sqlite3"; // Initialize SQLite store let store = SqliteStore::new(store_path.into()) .await .map_err(ClientError::StoreError)?; let arc_store = Arc::new(store); // Create authenticator referencing the store and RNG let authenticator = StoreAuthenticator::new_with_rng(arc_store.clone(), rng.clone()); // Instantiate client (toggle debug mode as needed) let client = Client::new(rpc_api, rng, arc_store, Arc::new(authenticator), true); Ok(client) } pub fn get_new_pk_and_authenticator() -> (Word, AuthSecretKey) { // Create a deterministic RNG with zeroed seed let seed = [0_u8; 32]; let mut rng = ChaCha20Rng::from_seed(seed); // Generate Falcon-512 secret key let sec_key = SecretKey::with_rng(&mut rng); // Convert public key to `Word` (4xFelt) let pub_key: Word = sec_key.public_key().into(); // Wrap secret key in `AuthSecretKey` let auth_secret_key = AuthSecretKey::RpoFalcon512(sec_key); (pub_key, auth_secret_key) } #[tokio::main] async fn main() -> Result<(), ClientError> { // Initialize client let mut client = initialize_client().await?; println!("Client initialized successfully."); // Fetch latest block from node let sync_summary = client.sync_state().await.unwrap(); println!("Latest block: {}", sync_summary.block_num); // ------------------------------------------------------------------------- // STEP 1: Create a basic counter contract // ------------------------------------------------------------------------- println!("\n[STEP 1] Creating counter contract."); // Load the MASM file for the counter contract let file_path = Path::new("./masm/accounts/counter.masm"); let account_code = fs::read_to_string(file_path).unwrap(); // Prepare assembler (debug mode = true) let assembler: Assembler = TransactionKernel::assembler().with_debug_mode(true); // Compile the account code into `AccountComponent` with one storage slot let account_component = AccountComponent::compile( account_code, assembler, vec![StorageSlot::Value(Word::default())], ) .unwrap() .with_supports_all_types(); // Init seed for the counter contract let init_seed = ChaCha20Rng::from_entropy().gen(); // Anchor block of the account let anchor_block = client.get_latest_epoch_block().await.unwrap(); // Build the new `Account` with the component let (counter_contract, counter_seed) = AccountBuilder::new(init_seed) .anchor((&anchor_block).try_into().unwrap()) .account_type(AccountType::RegularAccountImmutableCode) .storage_mode(AccountStorageMode::Public) .with_component(account_component) .build() .unwrap(); println!( "counter_contract hash: {:?}", counter_contract.hash().to_hex() ); println!("contract id: {:?}", counter_contract.id().to_hex()); // Since the counter contract is public and does sign any transactions, auth_secrete_key is not required. // However, to import to the client, we must generate a random value. let (_counter_pub_key, auth_secret_key) = get_new_pk_and_authenticator(); client .add_account( &counter_contract.clone(), Some(counter_seed), &auth_secret_key, false, ) .await .unwrap(); // Print procedure root hashes let procedures = counter_contract.code().procedure_roots(); let procedures_vec: Vec<RpoDigest> = procedures.collect(); for (index, procedure) in procedures_vec.iter().enumerate() { println!("Procedure {}: {:?}", index + 1, procedure.to_hex()); } println!("number of procedures: {}", procedures_vec.len()); // ------------------------------------------------------------------------- // STEP 2: Call the Counter Contract with a script // ------------------------------------------------------------------------- println!("\n[STEP 2] Call Counter Contract With Script"); // Grab the first procedure hash let procedure_2_hash = procedures_vec[0].to_hex(); let procedure_call = format!("{}", procedure_2_hash); // Load the MASM script referencing the increment procedure let file_path = Path::new("./masm/scripts/counter_script.masm"); let original_code = fs::read_to_string(file_path).unwrap(); // Replace the placeholder with the actual procedure call let replaced_code = original_code.replace("{increment_count}", &procedure_call); println!("Final script:\n{}", replaced_code); // Compile the script referencing our procedure let tx_script = client.compile_tx_script(vec![], &replaced_code).unwrap(); // Build a transaction request with the custom script let tx_increment_request = TransactionRequestBuilder::new() .with_custom_script(tx_script) .unwrap() .build(); // Execute the transaction locally let tx_result = client .new_transaction(counter_contract.id(), tx_increment_request) .await .unwrap(); let tx_id = tx_result.executed_transaction().id(); println!( "View transaction on MidenScan: https://testnet.midenscan.com/tx/{:?}", tx_id ); // Submit transaction to the network let _ = client.submit_transaction(tx_result).await; // Wait, then re-sync tokio::time::sleep(Duration::from_secs(3)).await; client.sync_state().await.unwrap(); // Retrieve updated contract data to see the incremented counter let account = client.get_account(counter_contract.id()).await.unwrap(); println!( "storage item 0: {:?}", account.unwrap().account().storage().get_item(0) ); Ok(()) }
The output of our program will look something like this:
Client initialized successfully.
Latest block: 34911
[STEP 1] Creating counter contract.
counter_contract hash: "0x77358072810bc3db93e5527399ab7383889b0de3430053506ab5fc1dfe22f858"
contract id: "0xa0494a47d2ac49000000afba9465bf"
Procedure 1: "0xecd7eb223a5524af0cc78580d96357b298bb0b3d33fe95aeb175d6dab9de2e54"
number of procedures: 1
[STEP 2] Call Counter Contract With Script
Final script:
begin
# => []
call.0xecd7eb223a5524af0cc78580d96357b298bb0b3d33fe95aeb175d6dab9de2e54
end
Stack state before step 2598:
├── 0: 1
├── 1: 0
├── 2: 0
├── 3: 0
├── 4: 0
├── 5: 0
├── 6: 0
├── 7: 0
├── 8: 0
├── 9: 0
├── 10: 0
├── 11: 0
├── 12: 0
├── 13: 0
├── 14: 0
├── 15: 0
├── 16: 0
├── 17: 0
├── 18: 0
└── 19: 0
View transaction on MidenScan: https://testnet.midenscan.com/tx/0x7065f2a5af6fee6cb585c1c10a48a667f3980d6468dc6d3b3010789b4db056d3
storage item 0: Ok(RpoDigest([0, 0, 0, 1]))
The line in the output Stack state before step 2598
ouputs the stack state when we call "debug.stack" in the counter.masm
file.
To increment the count of the counter contract all you need is to know the account id of the counter and the procedure hash of the increment_count
procedure. To increment the count without deploying the counter each time, you can modify the program above to hardcode the account id of the counter and the procedure hash of the increment_count
prodedure in the masm script.
Running the example
To run the full example, navigate to the rust-client
directory in the miden-tutorials repository and run this command:
cd rust-client
cargo run --release --bin counter_contract_increment